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Although it has been stated that “an attempt to solve (very large
problems) by subspace iterations seems futile” (H. G. Matthies, Com-
put. Struct. 21 (1985), p. 324), we will show that the statement is not
true, especially for extremely large eigenproblems. In this paper a new
two-phase subspace iteration/Rayleigh quotient/conjugate gradient
method for generalized, large, symmetric eigenproblems Ax =ABx is
presented. It has the ability of solving extremely large eigenproblems,
N =216,000, for example, and finding a large number of leftmost or
rightmost eigenpairs, up to 1000 or more. Multiple eigenpairs, even
those with multiplicity 100, can be easily found. The use of the
proposed method for solving the big full eigenproblems (N~10%), as
well as for large weakly non-symmetric eigenproblems, have been
cansidered also, The proposed method is fully iterative; thus the fac-
torization of matrices is avoided. The key idea consists in joining two
methods: subspace and Rayleigh quotient iterations. The systems of
indefinite and almost singular linear equations (4 —o8)x =By are
solved by various iterative conjugate gradient/Lanczos methods. 1t will
be shown that the standard conjugate gradient method can be used
without danger of breaking down due to its property that may be called
“self-correction towards the eigenvector,” discovered recently by us,
The use of various preconditioners {SSOR and IC) has also been con-
sidered. The main features of the proposed method have been analyzed
in detail. Comparisons with other methods, such as, accelerated sub-
space iteration, Lanczos, Davidson, TLIME, TRACMN, and SRQMCG,
are presented. The results of numerical tests for various physical
problems {acoustic, vibrations of structures, quantum chemnistry) are
presented as well. The final conclusion is that our new method is
usually much faster than other iterative methods, especially for very
large eigenproblems arising from 3D elliptic or biharmonic problems
defined on irregular, multiply-connected domains, discretized by the
finite element (FEM) or finite difference (FDM) methods. © 1504

Academic Press, Inc.

1. INTRODUCTION

We are interested in solving the generalized symmetric
eigenproblem

Ax = lBx, N

where the matrices 4 and B are symmetric, large

(N ~1000-100,000), and sparse and where B is positive
definite. Several methods are proposed for solving such
eigenproblems if a few smailest eigenpairs are required,
M =10-20. However, if a very large number of eigenpairs
have to be found, these methods are often ineffective or
cannot be used at all because of memory limitations.

For problems having moderate dimensions, the methods
using the factorization of matrices, such as Lanczos or sub-
space iteration, are widely used. The Lanczos method is able
to compute several extreme cigenpairs very quickly [ 1-4] at
the expense of: factorization of the shifted matrix A — a8,
solving linear system with high accuracy at each iteration
step [5, 6], and the use of an external memory for storing
the converged Ritz vectors. The standard subspace iteration
suffers from a small rate of convergence [7], whereas an
improved efliciency of the accelerated subspace iteration has
been attained at the expense of several factorizations of the
shifted matrix 4 —sB[8].

If the dimension N and the bandwidth of matrices i, are
very large, the factorization cannot be performed at all.
When only a small number of eigenpairs are required, one
can use pure iterative methods, such as TRACMN [6]1,
SIRQIT [9], SROMCG2 [10, 117, or Davidson [12, 13].
The TRACMN method, developed by Sameh and
Wisniewski, seems to be the most efficient one. The
Davidson method is very efficient for quantum chemistry
problems, but for other problems its effectiveness is not
satisfactory [14, 15]. The iterative methods suffer from a
small rate of convergence, especially for higher eigenpairs.
Divergence of the iteration process may even ocour [117]. If
a very large number of eigenpairs has to be computed, their
effectiveness is not satisfactory,

Other methods, such as transformation (QR or QZ) or
search-type methods (determinant search [7], bisection
[16,17]) cannot be used for large problems, because
of memory limitation and the unacceptable cost of
computation.
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It is seen that. the search for better methods is highly
desirable, especially for three types of problems:

(1} non-factorizable ones, where the matrices 4 and B
have very large dimensions ¥ and bandwidths m,;

(2) the number of eigenpairs that has to be computed is
large, M ~ 1000;

(3) large full eigenproblems that cannot be solved by
transformation methods.

In this paper we present the new two-phase, fully iterative
method that fulfills all these requirements, taking advantage
of subspace iteration and the Rayleigh quotient method. It
can find a iarge number of leftmost eigenpairs, M ~ 1000,
for very large problems, e.g., N=216,000. It can be used for
large fuil eigenproblems that cannot be solved by transfor-
mation methods. Also the weakly non-symmetric problems
can be solved by it. Although it is especially suited for the
problems mentioned above, it is a general-purpose method.

This paper is divided into ten parts. Section 2 contains
a description of the main idea of our method with an outline
of the aigorithm. In Section 3 some computational aspects
are discussed, such as an evaluation of the cost and the
required memory. In Section 4 we analyze the choice
of iterative solver for indefinite linear systems, pre-
conditioning, the choice of parameters, and the strategy of
shifting. In Section 5 we present the numerical evaluation of
the cost and some features of the method. In Section 6 we
present the results of tests for various physical problems,
including very large and full eigenproblems. Section 7
contains comparisons with other methods. In Section 8
we present the results for weakly non-symimetric problems.
Section 9 contains the description of the disadvantages and
the observed failures of our method. Section 10 contains
brief information concerning use of the proposed method
for computation of the rightmost eigenpairs.

Throughout this paper standard notation will be used.
Matrices will be denoted by capital Roman letters, vectors
by small Roman letters, and scalars by Greek letters. The
norms will be denoted by || || and the scalar product of two
vectors a, be RY by {a, b).

2. DESCRIPTION OF THE ALGORITHM

In recent years several methods for solving eigenproblems
(1) were proposed. They are often combinations of known
methods, chosen in such way that they cancel, or at least
weaken, their disadvantages, e.g.,

— the Rayleigh quotient/bisection method developed
by Scott [17] is the standard bisection method, speeded up
by the Rayleigh quotient iteration;

— the SRQMCG2 method [10, 11] is the combination
of the Rayleigh-Ritz procedure and the Rayleigh quotient
minimization method;

— the TLIME method [18] is a combination of the
inverse and the Rayleigh quotient iterations;

—  the accelerated subspace iteration [87 can be viewed
as the combination of the standard subspace iteration with
the inverse power method, applied to ali the iterated Riiz
vectors simultaneously.

The new method developed by us is also a combination of
iwo methods: the subspace iteration and the Reyleigh
quotient iteration. If they are used separately, their perfor-
mances are not satisfactory, The subspace iteration method
enables one to obtain a good approximation to several
cigenpairs near the current shift very quickly, but it is too
slow if high accuracy is required [8]. The Rayleigh quotient
iteration is very effective, due to its cubic rate of
convergence, but it requires a good initial approximation
to the eigenpair; otherwise instabilities may occur [18, 19].
We note that both methods have complementary features.

The main idea of the proposed method is as follows. The
iteration process consists of two phases: subspace iteration
followed by Rayleigh quotient iteration. The Ritz vectors
obtained in the subspace iteration phase are used as the
initial approximations for the Rayleigh quotient iteration.
If the dimension K of the working space used in the
subspace iteration is large enough, then good initial
approximations to some eigenpairs will be obtained very
quickly, Then the Rayleigh quotient iteration can be
performed for these Ritz vectors to obtain the required, high
accuracy. After the eigenvectors have been computed, the
subspace iteration phase can be repeated with the new Ritz
Vectors.

Now we can outline the algorithm of our method.

(1)

Choose: K linearly independent vectors (K given)
[x9, x9, ... x%7;

Set their flags to "NONCONVERGED.”

Repeat n:=1,2, until all M required eigenpairs are
converged:
(subspace iteration phase)

(2)
(3) Solve K systems of linear equations by some
iterative method

Choose the shift ¢” for subspace iteration;

(4—a"B)y,=Bx;"',  j=1,..K (2.1)

with prescribed accuracy of residuals

Il = (A= o"B) y,— Bx!~\[ <1, (1, given) (22)
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(4) Perform the Rayleigh-Ritz procedure

(ay U=YTAY, V=Y"RBY,

where Y=[y,, ¥y, ... ¥x] (2.3)
(b) UQ=VQ diag(d,, 45, ... Ax), (2.4)
(c) X"=Y0, (2.5)

(5) Perform the Gram-Schmidt orthogonalization for
“NONCONVERGED?” vectors and compute the
Rayleigh quotient for each Ritz vector x7

1y = <X, A Y/Cx], BxX) . (26)
(6) Ifthereexist 1 <i< Kthat
Wl —uy T\ <& (e given) (2.7)

then
switch the process to the Rayleigh quotient
phase—go to step 7;
else
repeat the subspace iteration—go to step 2;
(Rayleigh quotient phase)
(7) Set o,=u7 and solve iteratively the system

(A—0;B)y;=Bx], (2.8)

(8) Update x]:=y/[|y;l, compute u}=p(x7) and
error ¢;= (4 — p(x7)B) x?
(9) If lle;|| <1, (1, given) then (2.9)
(10) (a)Set the flag of the converged eigenvector to
“CONVERGED,”
(b) Remove it from the working subspace,
(c) Supply the working subspace with the new Ritz
vector x.;
(10) else repeat the Rayleigh quotient iteration
—goto7;
end

Remarks. 1. In stepl we have to choose K initial
approximations to the eigenvectors. The standard approach
is suggested; see Section 4.4,

2. In step2 we have to choose the shift 6" for the
subspace iteration phase in such way as to obtain a
quick convergence of the Ritz vectors with minimal cost
of computation, without missing any eigenpair (see
Section 4.3).

3. Instep 3 the K linear (indefinite for ¢” > ,) systems
(2.1) have to be solved. To avoid factorization we have to
use an iterative method, such as SYMMLQ, MINRES
[20], or the standard conjugate gradient algorithm
(Section 4.1). The accuracy 7, can be moderate; thus the
cost of this step will be small.

4. Step 4 is the Rayleigh-Ritz procedure. In substep
(2.4) the full K'x K eigenproblem has to be solved, e.g., by
the generalized Jacobi method.

5. Step5 is the Gram-Schmidt orthogonalization,
which prevents convergence to the computed eigenpairs.
This step is costly when M is large.

6. Step 6 is the switching criterion. If we switch to the
Rayleigh quotient iteration too late, then unnecessary
subspace iterations are performed; otherwise temporarily
missed eigenvalues appear (Sections 4.2, 4.3).

7. Steps 7-9 are the Rayleigh quotient iteration. This
is the most time-consuming part of the algorithm. An
indefinite, almost singular linear system (2.8) has to be
solved by SYMMLQ or MINRES. Surprisingly, the
standard conjugate gradient method can be used as well, see
Section 4.1.

8. In step 10 the “front” of the computations is moved
forward. Dimension K of the working subspace is kept
constant. The idea is the same as that in [8].

Some Expected Features of the Algorithm. 1. The
proposed method ought to be able to find a large number of
eigenpairs effectively, because it joins the advantages of the
subspace iteration {quick finding of initial approximations
to the eigenpairs) and the Rayleigh quotient method (fast
convergence when the initial approximation is good).

2. In opposition to the standard subspace iteration,
where the computations have to be continued until a
required (high) accuracy of the eigenpairs is obtained, in
our method only the most efficient phase of the subspace
iteration is exploited. Thus, the cost of the subspace
iteration phase will be small.

3. A quick convergence of the Ritz vectors during the
subspace iteration phase, which depends on the ratio
Aif2: - kw1 [8], can be attained by choosing the dimension
K of the working subspace to be large enough, which makes
A Ay ko small

4. The subspace iteration method finds multiple eigen-
values without difficulty. Thus we expect the same good
behavior of our method in such a case, see Section 5.2.

5. The use of preconditioning should speed up the
convergence of the iterative solver used in steps (2.1)
and (2.8).

6. The algorithm is easily vectorizable, see Section 3.

The Similarities to Other Methods. To our knowledge
there is no method that is exactly the same as that presented
above. Several similarities to other methods can be found,
however. The similarity to the accelerated subspace itera-
tion method [ 8] lies in the fact that the sotution of the linear
systems performed there resembles the second phase of our
algorithm, but the subspace iteration uses inverse power
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iteration (with a direct solver), instead of the Rayleigh
quotient iteration (with an iterative solver) used by us.

The TLIME method [18] is similar to the Rayleigh
quotient phase of our method, because 1t joins the inverse
power and the Rayleigh quotient iterations with the
SYMMLQ, which is used for solving an indefinite system.

The use of the iterative method for solving indefinite
systems of equations has been proposed by Ruhe and
Wiberg [21], who have used the conjugate gradient method
within the inverse power iteration, Paige and Saunders [20]
have used their SYMMLQ and MINRES methods for this
purpose.

3. COMPUTATIONAL ASPECTS

In this section we discuss: (1) the cost of computations,
(2) memory requirements, (3) the autonomy of the code,
and (4) the vectorizability.

(1) An evaluation of the cost of our method 1s obtained
under the assumption that the cost of an iterative algorithm
used for solving an indefinite and almost singular system of
linear equations is of order O(N'*"), where a<1 (see
Section 5.1). The cost of computation of M eigenpairs can
be evaluated as

M
Co=Cre (nmN“ log(z7") 5 p(4)

i=1

+ Mng (KN*log(z ')+ rOM/Z))

+ Mng (10K 3), 3)
where

Cy. the cost of matrix—vector multiplication,
equal to mp(A) N,

mo(A)  the mean number of non-zero elements
per row in matrix A4,

ng{e) average number of the first phase
steps per cigenpair,

fro average number of the Rayleigh quotient
steps per elgenpair,

o the ratio of mean number of non-zero

elements per rows for matrices B and 4,
ro = mo( B)/mg(A).

The p(4;) is the convergence factor of the eigenpair, defined
as

¥
p(‘&:)zép Z IAj_;‘“il_l-i-nps

i=1

LWAh, (@)

where ¢, and y, are the constants. Its value depends
strongly on the distribution of the eigenvalues in the
spectrum, Formula (3) cannot be proven exactly, but it has
been confirmed entirely by the numerical experiments.

The values of parameters: K, € 1,, fgg, and ng are
independent of the concrete problem, whereas N, mg, g, o,
and p(4)are problem-dependent. Moreover, K, ngy, and ngg
do not depend on N, M, usuaily: ng; =0.4-1.0, K=5-15,
Rge = 2-5; thus we can assume they are of order O(1). It is
difficult to evaluate p{ ) theoretically, but experiments show
that p(i;)~0O(10), for i=1,..M< N 1If matrix B is
consistent we have ry ~ 1 and the asymptotic evaluation of
the cost is

Cor~ O(mg N **M) + O(moNM ) + O(MK?).  (5)

We see, that for moderate M the cost depends mainly
upon N* whereas for large M the cost of orthogonalization
will be significant also. The cost of the Rayleigh-Ritz
pracedure is negligible in all cases.

(2) We need a memory for eigenvectors, working
vectors, and matrices 4 and B. Thus, the maximal amount
of memory required by our method is equal to

My=Muy+NM=N2m,+7+K}+5M+NM. (6)
The amount of additional working memory depends on the
linear solver used, varying between 4N and 7N. Note that
the working memory M, is relatively large if we are
searching for a few eigenpairs; otherwise it is negligible.
This suggests another version of our method, where the
converged eigenvectors are stored-in the external memory.
This approach may be useful when we must solve a problem
that cannot be entirely placed in a working memory.
Note, however, that 1/Q operations will slow down the
computations significantly.

(3) The main part of the algorithm can be built up, in
principle, as the “black box.” It follows from two features of
our method:

— the parameters t,, & and K are almost inde-
pendent of the problem;

— the forms of the matrices 4 and B are arbitrary;
only the results y=Ax, z= Bx for given vector x are
required. If the preconditioner Pis used, y = P~ 'x has to be
computed. These operations can be performed within the
user-defined procedures, independent of the other proce-
dures of the method.

(4) OQur algorithm is ideally suited for array or parallel
computations, because each system of linear equations from
among (2.1) and (2.8) is solved independently. Keeping in
mind that the solution of linear equations is the most time-
consuming part of our method, we expect that its vectorized
version will be very effective.
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4. THE ANALYSIS OF THE METHOD

The following questions will be discussed in this section:

(1) choice of the iterative solver for systems of linear
equations;

{2) the influence of parameters on the cost and
completeness of the computed spectrum;

(3) the shifting strategy and the problem of missing the
eigenpairs;

{4} the orthogonalization strategy;

(5) choeosing the initial Ritz vectors;

(6)
The theoretical results concerned these questions will be
published later.

Two types of tests were performed: analytical and “real”
ones. As the basic analytical tests we have chosen:

preconditioning the iterative linear solver.

—- elliptic. The 2D and 3D Laplace problems,
—Vu—JAu=0, (M

defined on a rectangle a x b or a rectangular prism ax b x ¢
with Dirichlet (x| ,=0), Neumann (du/én| -=0), or mixed
boundary conditions;

— biharmonic. The 2D plate problems,
APu—Aiu=0, (8)

defined on rectangles ax b with both simply supported
(ul =0, d*ufon®|-=0) or clamped (u|,=0, dujdn|=0)
boundaries.

If they are discretized by FDM, the exact spectra of the
counterpart matrix problems are known, which enables us
to check many questions precisely. Besides analytical tests
we have performed real ones, e.g., for the elliptic problem
(7) defined on 2D or 3D irregular, multiply connected
domains, discretized by FEM. Also the biharmonic
problems were considered (see Section 6.1).

4.1. Choice of the Iterative Solver for Systems of Linear
Equations

The indefinite, almost singular systems of linear equa-
tions can be solved by: (1) SYMMLQ and MINRES, (2)
the standard conjugate gradient method applied to normal
equations, (3) the standard conjugate gradient method.

(1) The Lanczos-type methods SYMMLQ and
MINRES, developed by Paige and Saunders [207], arc
widely used for solving the singular problems [18, 227. The
use of them for solving (2.1) and (2.8) is highly recom-
mended. A sultable preconditioning will increase their
efliciency; see Section 4.5.

S81A11141-7

(2) The standard conjugate gradient method can be
used for the normal equation instead of (2.8), that is, for
{A—0,BY (4—0,B)y,=(4 —a,;B)" Bx", whose matrix is
positive definite for all shifts. Its conditioning is worse than
that of A—g,B, however. Also the lack of efficient
preconditioners for normal equations is a disadvantage of
this approach [23].

{3) The use of the standard conjugate gradient method
for solving (2.1) and (2.8) directly is possible. We have
discovered that the conjugate gradient method has the
property called by us “self-correction towards the eigenvec-
tor™: the gigenvector attracts the conjugate direction vectors
if they are sufficiently close to it.' Thus, the danger that
some coefficients of the conjugate gradient method will be
undefined 1s unlikely. In fact, we used the standard
conjugate gradients algorithm successfully for all types of
eigenproblems and it never broke down. We have to point
out that this conclusion is valid only for indefinite probiems
whose solutions are very close to some eigenvector. For
other indefinite problems the “self-correction” property is
not preserved and the conjugate gradient method may
break down. We have also checked that the use of
hyperbolic pairs, sugpgested in [24, 257, slows down the
convergence of our method.

The comparison of various solvers is presented in Fig. 1.
Two methods give comparable results: MINRES and
SYMMLQ (Figs. 1B, D). The standard conjugate gradient
method without preconditioning is less efficient, especially
for higher eigenpairs, but il we use the SSOR precondi-
tioning it is almost as efficient as SYMMLQ or MINRES
(Fig. 1C}. The CG-Gauss method is less efficient than other
methods; thus we do not recommend it (Fig. 1A}. We have
obtained the best results by the modified MINRES method.

4.2. The Influence of Parameters on the Cost and Complete-
ness of the Computed Spectrum

The influence of parameters on the behavior of our
method will be analyzed based on problem (7). Two aspects
are especially important: (1) the influence on the cost of
computations and (2) the influence on the completeness of
the computed part of the spectrum. In Table I we show the
history of five runs of our algorithm with various combina-
tions of parameters ¢, t,, and K: standard ones (¢ = 0.05,
1,=5x10"2, K=10, run 1}, weak switching criterion
(e=0.5, run2), large dimension of working subspace

' We have to point out, that the mentioned property should not be mis-
taken for that discovered by Paige, which states, that jn finite precision the
Lanczos vectors go to the most converged Ritz vector, In infinite precision
it does not hold, however, cf. [2, Eq. (13.4.6)], whereas the “sclf-correc-
tion” property of the conjugate gradient method does not depend on the
precision of the arithmetic and concerns the conjugate direction vectors
{which do not have counterparts in the Lanczos method) rather than the
residuals (the CG counterparts of the Lanczoes vectors).
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Cost[ (o) o — 3-D elliptic, irreqular FEM mesh, N=3033, CG-Gauss
% = 3-D eliptic, Iraguiar FEM mesy, N=o85D, MWINRES
C) ¢ — 3~D elliptic, irregulor FEM mesh, N=3033, CG
4000 4 {0} o = 3—D elliptic, irregular FEM mesh, N=3033, MINRES
a — 2-D Laplace, irregular FDM grid, N=992, MINRES L
no prec.
1 —SSO0R prec.
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Number of eigenvalus

FIG. 1

{K =18, run 3), small X=2 (run 4}, and sharp tolerance
(1,=5x 104, run 5). For every five iteration steps we pre-
sent the number of computed eigenpairs M, the cumulative
cost of computations C', (measured by the number of
matrix-vector multiplications), and the number of tem-
porarily missed eigenpairs ¢, defined as foillows: let A7, be
the largest computed cigenvalue; if there are cigenvalues
A; < A, that have not been found yet, there are temporarily

mlssed (see Fig. 2).

TABLE 1
A History of Computations for Problem {7), N=343, 1,=10"2

1 2 3 4 5

No.of Standard £=03 K=18 K=2 T, =5x10"*
iter.

no M, Ch o5, M, Cl o4 M, Cy o1, M, Cy 1, M, Cl i,

5 1 618— 8§ 1809 1 1 1124— 2 303 6 1 995—

19 10 2633 — 23 5680 4 15 4943 — 6 122330 10 3459 —

15 15 4108 — 43 12505 7 27 8733 — 9 213227 17 6020 —

20 21 3954 — 62 19907 7 36 12286 — 12 298424 25 /7B —

25 26 7187 1 87 307319 47 15900 2 16 4143 20 31 11091 —

30 36 10767 2 99 3527720 58 20888 1 18 483018 36 13094 |

35 39 12296 1 73 26719 — 21 574015 45 17087 —
40 47 15195 2 80 30378 — 23 645513 47 18506 1
45 49 16427 L 93 36044 2 26 TASA 1) 3L 209F
50 57 19425 3 97 37909 2 28 8149 8 59 24015 5
55 62 22018 — 31 9408 36 69 28633 1
60 T2 25846 — 34 10524 33 76 31646 —
65 77 28021 — 37 11605 30 80 33827 —
70 82 30552 — 41 13206 26 90 38528 2
75 89 33386 3 44 1447t 23 96 41863 2
80 97 37424 3 47 15689 20 98 42857 2
85 98 38203 3 49 16540 18

Effectiveness of various solvers and preconditicning. The cost is expressed by the number of matrix—vector multiplications.

{1) The cost of computations depends on the
parameters £ and K weakly. In runs 1—4 the computations of
M, =47 and M, =98 eigenpairs required (on the average)
C,,=15,500+400 and Cg4e=37,5004 900 matrix-vector
multiplications, whereas in run 5 the costs were significantly
higher: C,; = 18,500, Cgq = 42,900. Thus, a very small value
for T, causes a noticeable growth in cost. However, 1,
cannot be too large, because it may slow the convergence of
the Ritz vectors during the subspace iteration phase.

The large dimension of the working subspace K increases
the cost of the computation of the lowest eigenpairs (com-
pare runs 1 and 3, n=15), whereas small K enables one to
compute them very quickly (run 4). For higher eigenpairs
the costs are comparable in both cases. The large switching
tolerance ¢ influences the cost moderately (run 2), whereas
very small ¢ leads to a noticeable growth of cost, because
unnecessary subspace iterations are being performed.

(2) The completeness of the computed part of the
spectrum depends strongly upon ¢ and XK. If the switching
tolerance ¢ is too large, many temporarily missed eigenpairs
appear (run 2). Moreover, there 1s a danger than some of
them will be missed completely; see Section 4.3,

The influence of the dimension of the working subspace K
is also strong. The number of temporarily missed eigenpairs
is large if K'is too small (run 4). When K increases, the num-
ber of temporarily missed eigenpairs is reduced significantly
{run 1), but they cannot be eliminated entirely. Too large K
increases only the cost (run 3). There exists an optimal
value of K that assures both the minimal cost of the com-
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N=343, several multiple eigenpairs A2 3211
| Tempora 3y missed e:genpaxrs after: SR
~ n=30 S| step, tx e

300 o — n=12 Si| Step. t12—15 --m-‘"’m

] Jo———,

- Rlzm=224.2 .“...,,O’o

i o 00=2245
200+ ,C;@

r ..m

] __--JO — o'%=157
1004 o

0 — Tt r 1+ T 7+ r1rr+0rr1r 7T

0 75 100 125

50
Number of eigenvaiue

FIG. 2. The temporarily missed etgenpairs for two iteration steps: n=12, n =30,

putations and the minimal number of temporarily missed
eigenpairs. This result can be established theoretically.

The influence of the tolerance z; on the completeness of
the computed part of the spectrum is negligible {cf. runs 1
and 5).

General conclusions are as follows. The overall cost of
computation depends moderately on the values of
parameters ¢ and K, whereas the number of temporarily
missed eigenpairs depends on them strongly. Thus, if we
want to compute the eigenpairs in the proper sequence, the
dimension K should not be small and ¢ should not be too
large. The optimal values of the parameters are not very
sensitive to the specific problem; the algorithm can be built
up as a “black box.”

4.3. Shifting Strategy and the Problem of Missing the Eigen-
pairs

The shift ¢” should be chosen in such way as to obtain
good approximations to the eigenvectors as soon as
possible. A simplest, but efficient strategy of shifting is to
choose ¢”=4-277", where 77! is the largest eigenvalue
computed after #n— 1 subspace 1terati0ns and 4 <1 is the
prescribed constant.

A question that 1s closely related to the shifting strategy,
is the problem of missing the eigenpairs. If we increase the
shift too quickly, some eigenpairs could be missed com-
pletely. The strategy presented above is sufficiently conser-
vative to prevent such events, irrespective of the fact that
sorne eigenpairs are missing temporarily. In Fig. 2 we show

two steps of computation for problem (7): #=12 and
n =30, for which we have plotted ¢", 2" and all the tem-
porarily missed eigenpairs. Note that they lie between ¢”
and A7 .. Morecover, all eigenpairs missed temporarily in
step n=12 are found before step n=230. The spectrum
below ¢" is complete—there are no completely missed
eigenpairs. This observation is important, because it
suggests a stopping criterion: we should continue the
computations until ¢” > A ,,. This criterion is very useful if
the Sylvester test cannot be used.

4.4, The Orthogonalization Strategy

Step 5 of the algorithm need not be performed at every
step of the subspace iteration phase. This leads to a signifi-
cant improvement of the efficiency, especially for large M.
The Ritz vectors ought to be orthogonalized when some
of them start to converge to the eigenvector computed
previously.

The new Ritz vectors (step 10¢) have to be orthogonalized
against all computed eigenvectors, which may be ineffec-
tive for large M. This suggests including of the step 10c
into step 5 to avoid the additional orthogonalization.
Another possibility is to use the selective orthogenalization
strategy [4].

Orthogonalization of the computed cigenvector (after
step 9 1s not necessary unless its eigenvalue is equal or very
close to some eigenvalues computed previously. In such a
case we have to perform the orthogonalization to check
whether the new eigenvalue is a multiple or “spurious.”
Experience shows that this last event happens, but very
rarely.
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4.5. Choosing the Initial Ritz Vectors

We have checked that the standard method, consisting in
choosing the random vectors and one constant vector,
seems to be quite sufficient for all practical problems
[8, 26]; the constant or unit vectors can also be used
[, 137, but they do not show any advantages over the
standard approach.

4.6. Preconditioning of the Iterative Linear Solver

The preconditioning of eigenproblems was considered by
many authors, e.g., [11, 22, 24, 277. They have shown that it
improves the effectiveness of the calculations and sometimes
it is even necessary to assure a convergence. We have
tested the following preconditioners: diagonal, incomplete
Cholesky, and SSOR.

Diagonal scaling has been used with success by Davidson
[12,13]. Unfortunately, this preconditioner is efficient
mainly for special types of eigenproblems, arising in
quantum chemistry. For other problems it is not so
efficient [14, 15]. In our method it always slowed down the
convergence; thus it seems to be useless,

The incomplete Cholesky (1C) preconditioner, developed
by Meijerink, Van der Vorst [28], and Kershaw [29], is
defined as P= LDL = A — E, where L and D are the lower
and diagonal IC factors, whereas £ is the unknown error
matrix. The IC preconditioners are known to be very
efficient, but they require both additional memory and
preliminary computations. In our tests it was efficient for
the lowest eigenpairs only, breaking down completely for

higher eigenpairs because of the negative diagonal elements

that had arisen during the incomplete factorization process.
The SSOR preconditioner [ 24, 27, 30],

P=w/2—w)(Djo— L) D™ (Djw—LT), 9)

where L and D are the strict lower triangular and diagonal

parts of matrix 4 (A=D — L — L") and w is an acceleration

parameter, has important advantages: no additional

memory or auxiliary computations are required. The tests
show its great usefulness for our purpose.

(1) Elliptic problems. The efficiency of the SSOR
preconditioner depends on the dimension of problem N.
For the 3D elliptic problem defined on an irregular domain
we have obtained the following reduction of costs:

for N=3033, M =40: gain 20% (Fig. 1D}); lor
M =100: gain 35%.

for N=9860, M =20: gain 25% (Fig. 1B); for
M =100: gain 50% (extrapolation).

The use of the SSOR for small or medium problems
(N <1000) may lead sometimes to a growth of cost,
especially for higher eigenpairs (Fig. 1E).

(2) Biharmonic problems. SSOR preconditioning is very
useful here, especially for higher eigenpairs and large dimen-
sions. For the plate problem with & = 400, the convergence
of the non-preconditioned algorithm was poor, whereas the
use of the SSOR preconditioner enabled us to solve
considerably larger problems: N=2404, M =100 and

Cost| 3_p building frames (dashed lines):
{76 = N = 10368, SSOR prec.
— N = 5400, SSOR prec.
= N = 1764, no precond.
8000 — N = 1764, SSOR prec.

L

e 2 4 6 8 10 12 14

™1 1 1T 1T 11
16 18 20 22
Number of eigenvadlue

T T T T T T T 7

24 26 28 30 32

FIG. 3. The cost of solutions of various biharmonic problems. The cost is expressed by the number of matrix—vector multiplicaticns.
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N = 5332, M =70 (see Fig. 3). Similar results were obtained
for the building frame problem (N = 1764, M = 100}, where
the convergence of the preconditioned algorithm was much
better than that of the non-preconditioned one (Fig. 3).
Thus, for large biharmonic problems the use of SSOR
preconditioning is highly recommended.

5. THE COST OF COMPUTATIONS

5.1. The Dependence of Cost upon the Dimensions of the
Problem

We have evaluated the dependence of cost upon the
dimension of problem A, assuming that the rate of growth
is of order N* Five types of problems have been used for the
estimation of o: 2D and 3D elliptic, discretized by FDM on
regular grids and discretized by FEM on irregular meshes,
as well as a biharmonic, simply supported plate. The
dimensions: N = 100-100,000 for elliptic and N = 100-6000
for biharmonic problems enhance the reliability of the
evaluations,

The results are presented in Fig 4, We sce that for 3D
elliptic problems, o«~0.2, almost irrespective of the
regularity of the mesh. For the 2D cases the influence of
discretization is more significant: o ~ 0.52 for irregular mesh
and o ~0.31 for a regular one. For the biharmonic problem
o is close to 0.7. Note that the values of & decrease for higher
eigenpairs.

The conclusion is that the growth of cost, being com-
parable to that of solving the systems of linear equations
[cf. 30], is acceptable.
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5.2. The Dependence of Cost upon the Distribution of Eigen-
values

The cost of computations depends on the distribution of
eigenvalues in the spectrum. Based on formula (4}, we can
explain the following questions: (1) the distribution of mean
cost, (2) the cost of calculation of very close eigenpairs, (3)
the influence of discretization on the cost.

{1) The main result we have obtained theoretically
is that the cost of the computation of the cigenpair is
proportional to the function (4). A typical distribution of
the cost is presented in Fig. 5 for the 31> Laplace fuil eigen-
problem (N=M=2512). Note the excellent agreement
between the theoretical prediction (solid line) and the real
mean cost (dashed line). Such a distribution of the cost is
characteristic for problems whose spectra are not very far
from uniform (see also Fig. 8A, where the distribution of the
eigenvalues is almost uniform). Although the mean cost of
computation agreés with the theoretical prediction, the cost
of the computation of individual eigenpair sometimes differs
significantly from the value predicted by (4)—there is a
“variance” of the cost. Some of the eigenpairs converge
slowly, whereas others are computed with small costs,
sometimes less than those of the lowest eigenpairs. The
variance of cost is larger for eigenvalues having several close
neighbors. Another reason for the variance is the random
method of generation of the Ritz vectors; we cannot be
assured that the eigenvectors will appear in the proper
sequence. Note that the number of steps that the iterative
solver used for solving (2.8} varies only moderately; see

X v — 2-D plate, hermitian FEM
- a — 2-D irregular FEM mesh
g — 2—-D regular FDM grid
0.80 - o — 3-D irreguiar FEM mesh
’ o — 3—D reqular FDM. grid
0.60
0.40 -
0.20 g:::g:k—:g:__—m:g:M
0.00 T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Number of eigenvalue

FIG. 4. The rate of growth of the cost for eftiptic and biharmonic problems. « is the exponent of cost factor N2,
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Cost| 3-D Laplace, N=512, M=512, regular FDM grid
------ best polynomial fit of mean cost
—— theoratical prediction . R
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FIG. 5. The comparison of theoretical prediction and results of computations for full elliptic eigenpreblem. The cost is expressed by the number of
matrix—vector multiplications. The costs of subspace phase and orthogonalization are ommitted.

Fig. 5. This means, that the cost of computation depends
weakly on the convergence properties of the solver.

(2) The cost of computations for very close eigenvalues
is large because of Jarge values |4;— 4,|~'. If the eigenvalues
are multiple or well separated, the cost of computation is
smaller. The tests confirm this -conclusion entirely; see
Fig. 6, where we have plotted the costs of computations for
multiple and very close eigenvalues. The multiple eigen-
values are computed without any difficuities. In Fig. 5
almost all the eigenvalues are multiple (multiplicity 3, 6, 12,

21, 24, and 25) aﬁd they have been computed correctly,
despite the dimension of working subspace, K =3, was five
times smaller than the maximal multiplicity.

{3) The distribution of eigenvalues in the spectrum
depends both on features of the physical problem (its type,
boundary conditions, and shape of domain) and on
the method of discretization, which may split multiple

cigenvalues of the continuous problem. To explain it, let us
consider two cases:

¥ : ¥
Cost1 2D Laplace on unit square a :
--&-- jrregular FDM N=1056 n b
2000 1 —m— regular FDM N=1024 " "
----- mean cost [ "
HEE i
- ') [N “
é Voo A
. I "l I': ':
1500 o R B
A noog [ ] th
\ i [ L. :l
] ¢ H A R AR YR
1 :l It : VoLl
4: " iy [ A
1! I A FU e -k 1y .
[ 1 - (R NN LI N
1000 K RS LokTy h :,’ i
I AV ey B U S
4 i P et SV S A
' N4 s boaesiTho )
%, da-h ! i t £
TP 1 ! s N
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J- - A
| . b4
v Y T L — | — N T T Y T T T =T
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FIG. 6. Influence of splitting of eigenvalues on the cost of compultations.

The cost is expressed by the number of matrix—vector multiplications.
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Cost| 2D tLaplace on unit square, Dirichiet BC, M=12
10004 ¢ — ir. FEM mesh, lin. el. N=1157
v — reg. FEM mesh, quad. el. N=1225 F
| & = reg. FEM mesh, lin. el. N=1024 (D
x — irr. FDM grid N=1056 (C E
n — reg. FDM grid . N=1024 (B
8004 o — reg. FEM mesh, bilin. el. N=1156 (A
i D
600 - c
400 - B
] A
200
o T T T T T 13 T T
0.0 50.0 100.0 150.0 2000 )\

FIG, 7.

— problem (7) discretized by FDM with & =#h,
(multiple eigenvalues) or 4 ##, (close, but not multiple
eigenvalues);

problem as above, but discretized by linear or
quadratic finite elements, both on regular and highly
irregular meshes.

The results are presented in Figs. 6 and 7. The conclusions
are as follows:

If the eigenvalues are exactly multiple {(symmetric
domains, regular FDM grid, or bilinear FEM mesh), the
costs of finding of consecutive eigenpairs are small, being
close to the mean cost; the variance is small (Figs. 7A, B).

If the domain is symmetric, but the mesh is not
strictly regular, the multiple eigenvalues of the continuous
problem are split. The distances between them are usually
small (Figs. 7C, D, E); thus the mean cost grows
moderately and the variance is large (see Fig. 6). If the mesh
is highly irregular, the mean cost is larger compared with
those of regular meshes (Fig. 7F).

The conclusion is that the cost of computation depends
on the distances between the eigenvalues in the spectrum
that are dependent to some extent on the discretization.

6. THE RESULTS OF TESTS

6.1. Various Physical Problems

Now we will show the results obtained for various
physical problems that have been solved by our method
during its routine exploitation for over three years.

Influence of discretization on the cost. The cost is expressed by the number of matrix-vector multiplications.

(1) The computation of acoustic modes in the interior
of 3D rooms [31]. These probiems are of the elliptic type.
Both linear and quadratic finite elements were used. The
dimensions were: N =956, 3033, 9842, and 20,186; the
densities of matrices were small, m,=10-25. Usually
M = 20-100 eigenpairs were computed. The typical costs of
computations are presented in Figs. 1B, C, D.

(2) The mode shapes of plates modeled by the
biharmonic eguation (8), discretized by the standard
hermitian finite elements with 4 degrees of freedom in each
node. The dimensions were N = 100-6000, densities of
matrices mg~ 40. The convergence was very good, see
Fig. 3. The use of SSOR preconditioning was necessary,
especially for higher eigenpairs and large dimensions.

{3) The natural modes of vibration for 3D building
frames composed of beams having six degrees of freedom in
each node. These problems are of mixed type: biharmonic
due to bending and elliptic due to torsion and tension. They
are similar to those described in {87, but we solved
considerably larger problems, N =720, N = 1746, N = 5400,
and N =10,368. The densities of the matrices were m, ~ 5.
The SSOR preconditioning was necessary, as in the plate
problems (Fig. 3).

For these problems we have performed a comparison
with the accelerated subspace iteration method. For
N=720 the accelerated subspace iteration method was
better, but for ¥ = 1746 our method was more efficient (see
Section 7).

(4) The computation of mode shapes of linear substruc-
tures for dynamic analysis of large non-linear structures
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FIG. 8. The results of computaions for various Nesbet matrices. The cost is expressed by the number of matrix-vector multiplications,

[32]. The entire system is composed of several large linear
glastic substructures, joined by the small substructures
having non-linear damping and elastic properties. The total
dimension of the system is of order 10*. The use of eigen-
maodes enables us to transform the linear subsystems from
physical to modal coordinates, reducing the dimension to
102, for which the numerical integration can be performed
very effectively. The calculation of eigenmodes for linear
subsystems is the most time-consuming part of preliminary

computations. The use of our method improves its effective-
ness. The dimensions of the linear subsystems were N = 800,
1120, 2460, 3847 and M = 10-35 eigenmodes were usually
computed.

{(5) The problem of quantum chemistry concerns the
large scale configuration interactions of electronic
wavefunctions of atoms and molecules [ 13]. The matrices
A= X, or X, are defined as [13]

FIG. 9. The cost of computations of elliptic test problems for wide range of dimensions. The cost is expressed by the number of matrix—vector
multiplications.
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Xy Xy=2—1,
Xo: X,=14012i—= 1),

whereas B= I The matrices are relatively dense, mg = 100.
We have solved (10) for N=1000, M =362 (Fig 8A),
N=10,000, M=75 (Fig.8B), and N=40,000, M =11
(Fig. 8C), as well as (1) for N=1000, M =250, with
accuracy 1, = 107° No preconditioning has been used. The
mean cost of computation of the consecutive eigenpairs
grows moderately due to the almost uniform distribution of
the eigenvalues, whereas the variance is large. The behavior
of our method is not different, compared to other examples,

6.2. Very Large Problems

We have computed a large number of eigenpairs of the
elliptic problems of medium size,

iD, regular FDM grid, N = 8000, M = 100;
N=15625 M =50,
3D, irregular FEM mesh, N = 3033, M = 100,
N=9840, M =50; N=120,186, M =25;
and a small number of eigenpairs for very large 3D
problems discretized by FDM,
N=27,000, M=25 N=139304, M= 14;
N=T79507, M =5;
N=103,823, M =3; N=216,000, M =2.

The results are presented in Fig, 9. They prove the ability of
our method to find a large number of eigenpairs (first
group), as well as the ability of solving the extremely large
eigenproblems (second group). Note that the dimension
N=216,000 in the last test is almost of order 10° The

X,=1if [i—j| <50,
X,=1if |i—j| <50,

101

(10)
(1)

0 otherwise; i, j=1, .., N,

0 otherwise; /,j=1,..,N.

collection of results for various big problems is presented in
Fig. 10.

We did not observe any new difficulties in comparison
with problems of medium size. The dimensions mentioned
above are limited only by the performance of our com-
puters, so we expect that our method can be employed for
considerably larger problems as well.

6.3. Full Eigenproblems

Problems of this type are solved usually by transforma-
tion methods, such as QR or QZ. For large problems they
cannot be used because of memory limitations, especially if
m, ~ N. The following elliptic full eigenproblems have been
solved by our method:

2D, regular FDM grid, N = M =210;
3D, irregular FEM mesh, N = M =432;
3D, regular FDM grid, N= M =512 (Fig. 5);

N=2A=729; N =M= 1000
We were able to compute the whole set of eigenpairs
without essential difficulties. The most serious problem
was the orthogonalization of a large set of vectors. We
employed the reorthogonalization to prevent instabilities.
The economic strategy of orthogonalization is being
investigated now. The conclusion is that our method is not
concurrent to the QR or QZ for small problems, but it may
be useful for large ones.

+ — 3D Laplace
= 1000 | o — 3D e||l_?t_iC. irreq. FEM
i o — 3D building frames
£ [ a — 3D non—symmetric,y=0.5
g [ ¢ — 2D plates
£ v — full eigenproblems
k=4 r +« — Nesbet matrix X,
[}
100 o ¢ !
g : O X !
2 f o) ! Superiority
- A ' uperiori
g i a © /] of our method
(3] B A 7
4 A A
o) '
v 10F A o ,’O ; +
@ o f
T /
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1000 10000 100000
Dimension of problem N
FIG. 10. The compositions of results for various big problems solved by our method.
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7. COMPARISONS WITH OTHER METHODS

The comparisons concern mainly the effectiveness
measured by the number of arithmetic operations and some
important features of the methods. To obtain reasonable
comparisons, which do not favor our method, we have
assumed the lower evaluation of the costs of concurrent
methods. The results of tests for compared methods (except
the ASI) have been taken from the literature. Unfortunately,
there are few results for large N and M thus we realize that
the comparisons are only tentative and additional tests
would be highly desirable.

The following methods have been taken into account:
accelerated subspace iteration (ASI) [8], Lanczos [1],
Davidson [12-15], SRQMCG?2 [10, 11], TRACMN [6],
and TLIME [187.

(1) The accelerated subspace iteration method (ASI),
used in the ADINA package [8], is one of the best,
general-purpose methods. It is the standard subspace
iteration applied to the matrix {4 —¢B)~!, accelerated by
overrelaxation. Its cost can be evalnated as

Cast ~ nny Ni2 + ng(t5)(2m, NK + 10K}

+ 1o g NM?/2, (12)
where n,~ O(1) is the number of factorizations, ng, is the
mean number of subspace iterations per eigenvalue
(evaluated by ws as ~ Q1) for K> M and ~O(M) for
K< M [8]), and ngy,,~ (1} (8, p. 322] is the number of
orthogonalizations. The cost of the Rayleigh-Ritz proce-
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dure is then O{MK?) for K< M and O(M?) for K> M.
Thus the evaluation of the asymptotic cost is

Casi ~ O(MEN) + O(m, NM) + O(myNM?)

O(MK?), K< M, 1

{O[M . K=>M. (13)

It is seen that the cost depends strongly on factorizations.
For large M the cost of the Rayleigh-Ritz procedure is also
significant if K> M. For Laplace problems (7), discretized
by FDM, where m,= N'? for the 2D case and m, = N>
for the 3D case, we obtain the following comparison of
asymptotic costs:

2D 3D
ASI O(N?) 0N
Our method QN2 O(N )

It is evident, that for very large problems our method will
be much better than ASI. This conclusion has been verified.
In Fig. 11 we present the relative time costs {ratio of the
CPU times of ASI and our method) for the lowest eigen-
pairs. The following problems were compared: (A) the
biharmonic, 31> building frame, N=0600, m,=126,
my=48; and three elliptic ones; (B} small 2D, N =297,
m,=19; (C) medium 2D, N=1225 m,=36;, and
(D) medium 3D, N=1320, m,=111. We see that ASI is
miuch better for small and medium problems, especially for
biharmonic ones, where #1, ~ m,. When the dimensions of
problem N and the bandwidth m, increase the superiority of

—t
Q

4aO0po
vl
ZZZZ
[
)
©
by

Relative time cost

Laplace regular, mp=111
Laplace regular, mpy= 36
Laplace irrregular, my=_ 19
building frame, my=126

o

4 6
Number of eigenvalue

10

FIG. 11. The comparison of the accelerated subspace iteration with our method.
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ASI decreases, disappearing entirely at ¥ ~ 1300. Tt even
happened that for N =4000 ASI had not converged at all,
because of the errors of factorization (see [30, p. 167;33]).
Our method seems to be better for N>2000. This is
especially true for 3D problems, where the bandwidth m,, is
relatively large.

(2) The Lanczos algorithm is often considered as the
best method for finding a large number of eigenpairs [1-5].
For example, the modified block Lanczos method described
in {1] was abie to solve the structural eigenproblem with
N=4479, M =30 five times faster .than the standard
subspace iteration for m, =183, and two times faster for
m, = 566. The largest problem solved by this version of
Lanczos was N = 19,658, m, = 319, M = 180, which is a very
good result. It may then look like the Lanczos method
is much better than our method, but a more precise
comparison should be based on the evaluation of the cost.

Assuming that the cost of [/O operations can be omitted,
the cost of computation of M eigenpairs by the Lanczos
method without factorization is

CLanczos ~ Mnitn10N+ norlmONM2/2 + N(Mnil]2/29 (14)

where n;, is the number of Lanczos steps per converged
eigenpair and n,, is the number of orthogonalizations (Q(1)
for selective and O(M) for full orthogonalization; we
assume ..~ O(1)). Due to the extraordinary convergence
properties of the Lanczos method, the number of iterations
per converged eigenpair is usually small, e.g., n, =2.5 [3],
=19 [5], n;, = 1.7 {1]; thus n, ~ O(1). The asymptotic
cost of the factorization-free Lanczos method is then

ClLanczos ~ O(moNM) + O(mg NM?) + O(NM?). (15)

Comparison with (5) shows the difference between the first
terms; in our method it is equal to Q(moN'"*M)~
N*O(my NM). Since N* ~ O{10)-0(10%), it agrees with the
observation that our method has to perform hundreds to
thousands of iterations to compute an eigenpair. It is thus
evident, that the Lanczos method is much better for these
eigenproblems which do not need factorizations like the
standard ones (if spectral transformation is not used).
There are two cases when factorization in the Lanczos
method is necessary: the generalized eigenproblems and the
standard ones if the spectral transformation has to be used
for improving the conditioning of the required eigenvalues
[3, 36]. Although generalized eigenproblems can be solved
by the Lanczos method without factorizations (see below),
there is an opinion that all useful variants of the Lanczos
method (including its block and band versions) must
perform it [ 5, 14, 34-37]. The cost of the Lanczos method
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with factorization is (cf. first three rows for UTLA in
[34, p. 670])

C ~nfm§N/2+Mﬂi12mbN+nonm0NM2/2

+ N(Mn;\)*/2,

Lanczos

(16)

where n,~ O(1) is the number of factorizations; thus the
asymptotic cost is

Clanceos ~ O(m2N) + O(m, NM) + O(moNM?) + O(NM?).
(17)

It is seen that the necessity of factorization and the solu-
tion of factored systems changes the evaluation completely.
For large N and m,, the cost becomes very high, annihilating
entirely the benefits arising from the convergence properties
of the Lanczos method. In such cases our method will be
better. The same conclusions are valid for the shift-and-
invert and the block Lanczos methods, if they factorize a
matrix.

To illustrate the above conclusions let us consider the
3D elliptic problem N=39304, my,=7, m,=1157. Our
method has found M =14 eigenpairs performing 13,980
matrix—vector multiplications, which gives an average
of C,~27x10* arithmetic operations per eigenpair
(1 operation = 1 multiplication + 1 addition). The costs of
basic matrix operations for this problem are

Matrix—vector multiplication ( ~myN), C, ~2.7x10°,
(~2m,N), Cypi~9.3x 107,
(~3mZN), Cp ~2.7x 10

Solution of factored system

Factorization

It 1s seen, that our method is able to find Cg.,/C.= 100
eigenpairs before the factorization is finished. Moreover, the
cost of solving a factored system is comparable to that of
computing one eigenpair in our method (C,/C,,, ~ 3). This
means, that for large dimensions, N > 10%, our method will
be better than the Lanczos method, and this superiority will
increase quickly with increasing N. This is evident when M
is small (cf Fig.11, D), but our method will probably
be better also for large M. Note, also, that the Cholesky
factor requires 4.6 x 107 memory units (182 MB in single
precision) in the considered case.

We realize that the Lanczos method is more useful for
eigenproblems solving currently, because their dimensions
are not extremely large. Note, however, that in the 3D case,
even coarse discretization leads to a very large dimension.
For example, an elliptic problem defined on the cube, whose
edges have been divided into 30 intervals, has the dimension
N =27,000. Since in the future much larger eigenproblems
will probably be solved, we think that our method might be
useful.

There are two ways of solving generalized eigenproblems
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by the Lanczos method without factorizations. The first
consists of solving systems of linear equations Bx =y by
some iterative solver, e.g., the (preconditioned ) CG method.
However, the accuracy of such solutions has to be high;
otherwise spurious eigenpairs will occur [6]. In this case
the cost of A Lanczos steps will be roughly of
moMN'**log(t~!), where t has to be of the order of
machine precision [6, p. 1257]. Such cost is comparabie to
that of our method and the conclusions should be based on
numerical tests.

The second way of avoiding factorization in the Lanczos
method is to work with the generalized inner product,
{x,y>g=<x, By> [38]. Such an approach has dis-
advantages, however: (a)the orthogonalization must be
performed in each iteration; (b} the reduced matrix is full
rather than tridiagonal. This gives the total cost of order
2mg NM + moNM?/2+ M?, which is considerably larger
than that of our method. Moreover, solving the generalized
eigenproblem inside the Rayleigh-Ritz procedure is a
problem itselfl if A/ is not small; thus the iterations have to
be restarted frequently, which slows down the convergence.

Apart from the necessity of factorization in generalized
eigenproblems, there are two other minor disadvantages of
the Lanczos method. The first is the loss of orthogonality
results in making redundant copies of the eigenpairs, which
is still considered as a weak point of the Lanczos method
(and also its block version) [39, p. 28]. In our method this
problem is not serious. We observed duplications of some
eigenpairs but, as opposed to the Lanczos method, this
phenomenon is not permanent. The spurious eigenpairs
were always eliminated during orthogonalization (step 5 of
the algorithm). There was no breaking down or other
dangerous phenomena; the only result was a small increase
of global cost.

To compute all eigenvectors spanning an invariant sub-
space by the Lanczos method, one has to perform several
runs with different starting vectors, or to use the block
Lanczos method with the dimension of the block equal at
least to the dimension of this invariant subspace (not known
a priori) [35, p. 273; 36, p. 170]. In constrast, our method
finds all the invariant subspaces in a single run, inde-
pendently of initial approximations, due to the “attraction”
property of the subspace iteration and the presence of
rounding errors. No information on the multiplicities is
required. Moreover, the dimension of the working subspace
K need not be equal to the dimension of the invariant
subspace—it can be smaller without danger of missing any
eigenpair, see Section 5.2, p. 97. The maximal multiplicity
we have found correctly by our method was 100, whereas
the dimension of working subspace was K =5 only.

Finally we would like to state that our method seems to
be superior to the Lanczos method for large generalized
eigenproblems, especially three-dimensional ones. The
Lanczos is better for standard eigenproblems if the spectral

DUL AND ARCZEWSKI

transformation is not used, as well as for small and medium
generalized eigenproblems.

(3) The Davidson method is the Rayleigh-Ritz proce-
dure applied to the non-Krylov subspace, combined with
diagonal [12, 13, 157] or general preconditioning [14]. A
superiority of the Davidson method over the Lanczos
method for quantum chemistry problems is reported in
[12,13], whereas it is not always observed in other
problems [15]. The cost of the Davidson method is

~ (T (Mo NM + g NM 22+ 10M %), (18)

where n, is the number of iterations (~O(M) for the
general case, N, =0 [13], based on the analogy of the
Lanczos method [12, 14, 15]); thus the asymptotic cost is

CDavtdson

CDavidsan(Ngucss = 0) ~ O(mONM2)+ O(mONM3)+O(M4)
(19)

It is seen that the main part of the cost is that of
orthogonalization if N M, whereas the cost of the
Rayleigh-Ritz procedure is significant for N ~ M. For large
M the cost of orthogonalizations and the generalized
Rayleigh—Ritz procedure will be significant [ 14]; thus the
Davidson method may be worse in this case. We suppose,
however, that the Davidson method may be better for
standard eigenproblems, especially when a small number of
eigenpairs is sought. Unfortunately, we do not know the
results of solving large generalized eigenproblems by the
Davidson method; thus quantitative comparison with our
method is not possible. We compared, thus, our method
with the results of [13, Table VIIl], for matrix X,,
N = 1000, N,,.., =0, unit starting vectors, T, = 10> (which
is equivalent to g7 < 10~'%in [13]). The results for various
M are given in Table T1.

It is seen, that the Davidson method is significantly better
for the considered problem. This agrees with the conclusion
that the Davidson method, being a variant of the Lanczos
method, is much better for standard eigenproblems. On
the other hand, the number of orthogonalizations and
Rayleigh—Ritz steps is larger for the Davidson method.
Comparison with the other results presented in [13]
suggest also that the Davidson method is better for the
lowest eigenpairs if good initial approximations can be

TABLE 11

M=1 M=5 M=10

Matr—vec.mult. 37-56 105-125 190-210
Davidson Nb orth. 11-12 11-13 9-18
Nb Rayl-Ritz 11-12 [1-13 9-18
Matr—vec.mult. 77 550 1200
COur method  Nb orth. 2 4 7
Nb Rayl-Ritz 2 4 7
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chosen (e.g., for Ny, = 10,75~ 1074 [13]). Note, however,
that for higher eigenpairs such a choice is difficuit [13].
Moreover, there is the danger that the Davidson method
may break down when it begins with a bad initial subspace
[15,p. 59].

The good behavior of the Davidson method is mainly due
to preconditioning [13, 14]. However, there is no hint of
how to choose an effective preconditioner for a general case.
In our method the SSOR preconditioner is general and
effective. It would be interesting to know wheter it couid be
used for improving the Davidson method.

It is known that the behavior of the Davidson methed is
not so good for other eigenproblems, such as those of
nuclear modeling [15]. Nothing is known to us about the
application of the Davidson method for structural eigen-
problems. Bearing in mind the conclusion of [15], it would
be interesting to compare both methods for various types of
eigenproblems.

{4) The SRQMCG2 method consists in minimization of
the generalized Rayleigh quotient over the set of Ritz
vectors by the preconditioned conjugate gradient iterations.
According to [}, p. 617, it is faster than other minimiza-
tion methods, such as SIRQIT [9]. The cost of SRQMCG2
is

Csromear ~ eg(T2 K TMmg N + moNM 32+ 10M7), (20)

where neg ~ O(N*) is the number of CG iterations. Such an
assumption is suggested by analyzing Figs. 1-4 in [11],
where M = 15 = const. Lower estimation of the asymptotic
cost is then

CSRQMCGZ -~ O(moNl +=A{f) + O(moNl * IMZ) + O(NQM:‘)
(21)

We see that the cost of SRQMCG2 is comparable to that
of our method only if N is small. For large N and M the cost
of orthogonalization is much larger in SRQMCG2 than
in our method, since the orthogonalization has to be per-
formed in each iteration of SRQMCG2. Moreover, the
number of matrix—vector multiplications per step is large
(4-7) compared with other methods {1-2). This is the
common feature of all the methods of Rayleigh quotient
minimization type [9, 111

For elliptic problems with M =15, 1,=10"° we have
obtained the following results (expressed by the number of
matrix—vector multiplications):

Dimension N 100 800 1800 2300
SRQMCG2 13,000 18,000 20,000 28,000 (410%)
Our methed 2,000 4,500 6,000 7,000

The costs of SRQMCG2 have been calculated based on
[11, algorithm and Figs, 1-47. It seems that our method is

105

better even for small N and M and all the more so for large
ones.

(5) The TRACMN seems to be the best minimization-
type method [6]. Its rate of convergence is similar to that
of SI [6, p. 1248 ]; then the cost is

Crracmn ~ Homl T2 {#ea{T) ) Mmg N

+mgNM 2+ 10M3), (22)

where n,, ~ Of{1) is the number of outer iterations and
neg ~ O(N*) is the number of inner (conjugate gradient)
iterations. Thus the asymptotic cost is

CTRACMNN0(m0N1+1M)+O(mONM2)+O{M3)- (23)

The costs of TRACMN and our method are then com-
parable if 7, ~ O(1); otherwise (1., ~ O(M)) our method
is better. To check it, we have performed the tests described
in [6]. Test8 is the Laplace problem of medium size
N=992, M=2 1,=10"" We present two results, for
N =992 with nonequal grid sizes (h,= 75, #,=75) and for
N =1024 with equal ones (b, =h, = =). The numbers of the
matrix—vector multiplications were

Dimension N Cost
TRACMN, 992 1345 [6, p. 1225, Table 2]
our method 992 707
our method 1024 450 {no results for TRACMN).

It is seen that our methed is about two times faster in this
case.

The next two tests are the small biharmonic problems.
The results are:

TRACMN Qur method

1462
2434

Test 6. N =64, M =5, simply supported plate 1810

Test 7, N =64, M =10, clamped plate 3772

It is seen, that TRACMN behaves better in both cases. This
is not especially surprising if we note that N is very small;
thus we could not expect our method to be better. The
comparison for large problems would be interesting.

(6) The TLIME method of Szyld [18] is especiaily
suited to the searching of eigenpairs within the prescribed
interval (y—a, y+a). A suitable strategy of switching
between inverse and Rayleigh quotient iterations assures
convergence to the required eigenvector without jumps to
any other. Omitting the cost of initial approximation, we
obtain the cost of computing of an individual eigenpair

Crime(M =1} ~ny(1,, Ni)[moN)"‘O(moNl+u)s (24)

where #;, is the number of iterations. The asymptotic cost
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of TLIME is essentially the same as that of the second
phase of our method due to the same idea—using the
Rayleigh quotient method with preconditioned MINRES
or SYMMLQ as a lingar solver.To compare our method
with TLIME we have solved the problems described in [22]
(standard Laplace on a unit square and the Laplace with
variable coefficients [22, p.171]) with 1,=10"'" and
SSOR preconditioning, obtaining the results given in
Table IIl {expressed by the number of iterations, as
in[227).

We sce that the total number of iterations is less in our
method (except in the case of 1,;, where the TLIME is
somewhat better). Moreover, the number of RQ iterations
is almost haif of those in TLIME, despite a similarity of
TLIME and the second phase of our algorithm. The reason
is that in our method RQ iteration is performed when
the initial approximations are sufficiently converged. It
confirms the observation that the convergence of
TLIME depends strongly on the quality of the initial
approximations [18, p. 1372].

In our opinion, the lack of a general strategy for the selec-
tion of the initial approximation is an important weakness
of the TLIME. This may be a serious drawback when a
large number of eigenpairs have to be computed. We
suppose, however, that TLIME may be better than our
method when one is searching for the eigenpair within an
interval, whereas our method is better for other problems.

Conclusions Based on Comparisons. (1) We may note
that three factors are crucial for the effectiveness of ail the
methods described above: factorization, the frequency of
orthogonalizations, and the influence of dimension N on the
cost. Other factors, being specific to concrete methods, are
hard to evaluate theoretically.

{2) Methods performing factorization, such as the
Lanczos method (including its block version) or accelerated
subspace iteration, are efficient for smaill and medium
problems. However, for large dimensions, N ~ 10%, they are
expensive, especially the ASL. Thus, for large N and small or
medium M our method seems to be better. For large M our
method is better than ASI; a similar conclusion for the
Lanczos method cannot be drawn without additional

TABLE III

N=961 N=3969

Laplace Var.coef. Laplace Var. coef.

Ay Ay Ay Ay ke A A2

Our method No. of RQiter. 90 172 80 133 88 253 114 260
' Total no. of iter. 120 282 112 184 250 382 152 310
TLIME [22, Tables 1-4] 219 340 177 334 302 378 238 —
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testing. In Fig. 10 we present the range of dimensions for
which our method seems to be superior 1o all other methods
using factorization.

(3) Methods performing orthogonalization on each
iteration, such as the Davidson or SRQMCG2, are inef-
ficient for large M. Thus, our method seems to be better in
this case. For small M the Davidson method may be better,
however.

(4) The costs of TRACMN and TLIME are similar
to that of our method. The comparisons show a little
superiority for our method, but the final conclusions
should be based on more general testing.

8. GENERALIZATION TO THE WEAKLY
NON-SYMMETRIC PROBLEMS

Our method can be used for solving the weakly
non-symmetric problems, having real eigenvalues only.
An important class of such problems is the Laplace
problem (7) supplied by first-order derivative terms,

—V3u+y(8u/dx + dufdy + dufdzy—u=0, (25)

where y can be thought of as a measure of the non-symmetry;
if y goes to zero, the problem goes to the symmetric one. We
assume, that y is so small, that the spectrum is pure real.
After discretization of (25) by FIDM we obtain the non-
symmetric matrix problem. The algorithm from Section 2
has been modified to handle unsymmetric matrices. The first
test was that 2D one with N =225, v=1.0, described in
[40], where the first eigenpair was found by the Arnoldi
method after 90 matrix—vector multiplications. Qur method
had to perform 223 such multiplications; thus we see that
the Arnoldi method is better. This is not surprising if we
recall that our method is not recommended for small
problems. On the other hand, we were able to find several
consecutive eigenpairs with moderate growth of cost. In the
second test we checked the influence of non-symmetry on
the behavior of our method. We assumed N =960, M =20.
The costs for y = 0.4, 1.0, and 2.0 are presented in Figs. 124,
B, C. For y< 1.0 the results are acceptable, whereas for
7 = 2.0 the convergence was slow and irregular, so we do not
recommend our method if y is large. In the last tests we
checked the behavior of our method for large dimensions.
The 3D problems with N=409¢, M=45 N=38000,
M =25; N=27,000, M = 12 have been solved for y = 0.5 (cf.
Fig. 12D, E}. No differences in comparisons with medium
problems have been noted.

We appreciate that the above results are surprisingly
good, because we did not expect such behavior at all, An
important advantage of our method is that the cost of
computation of consecutive eigenpairs grows moderately,
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FIG. 12. The results of computations for weakly non-symmetric problems. The cost is expressed by the number of matrix—vector multiplications.

similar to the symmetric case; thus we can find several of
them very effectively. We think that our method can be
recommended for problems with “small” non-symmetry,
< 1.0.

9. WEAK POINTS AND FAILURES OF OUR METHOD

The results presented above show, in our opinion, the
good performance of our method. However, it has also dis-
advantages. The main weak point of our method is that
there are parameters which have to be chosen properly.
Although most of them can be defined once and for all for
a wide range of eigenproblems, there are situations when
some of the parameters should be “tuned.” This means, that
some trials may be required to obtain satisfactory results.
Thus, the method is not recommended for sporadic users,
but rather for those which are especially interested in
solving very large eigenproblems routinely—the extensive
users [37]. However, there is the possibility of preparing a
guide which might help to choose the parameters properly.

In almost all cases the proposed method behaved well.
However, some interesting failures were observed during
testing. Here are a few:

(1) The bad initial approximations to the higher eigen-
vectors and the orthogonalization instabilitiecs. When we
attempted to compute the whole spectrum of the Laplace
problem (7) with ¥N=M =1000, it happened that, after
finding ~ 760 eigenpairs, copies of the lower ones (the first
to tenth) appeared again and again. The orthogonalization
could not reject them (although double orthogonalization
was used) and the process became looped.

(2) The inadequate shifting strategy. For the large
biharmonic problem, ¥ = 10,000, after computing the 50th
eigenpair there was a jump to the 80th one. Almost 30
of them were missed. The next 20 were computed properly,
however. The shifting strategy was too conservative,

(3) The troubles with the conditioning. When we tried
to sojve the biharmonic problems without preconditioning,
the cost of the first eigenpair was exceptionally high,
whereas the next ones were computing with less, but still
large, cost. The large problems could not be solved at all.
Using the SSOR preconditioning caused a drastic reduction
of costs and enabled vs to solve very large eigenproblems.

(4) The troubles with the start. When we tried to solve
the structural eigenproblems having rigid modes of vibra-
tions (those with A =0}, the iterations did not converge,
although the same problem without rigid modes converged
very quickly. Improving the shifting strategy preserved such
situations.

(5) Low precision of arithmetic. The method was not
able to compute the third eigenpair for the huge Laplace
problem (7}, N=216,000 {although the first two had been
computed ). The Rayleigh quotient iterations were irregular
and did not converge after a large number of steps. We
suppose that the precision of arithmetic ( ~ 7 digits) was too
low.

10. COMPUTATION OF THE RIGHTMOST EIGENPAIRS

Recently we have used our method with success for the
computation of several rightmost eigenpairs. The behavior
of our method was essentially the same as in the case for the
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computation of leftmost eigenpairs. For the 31D Laplace
problem (7) we have solved the following rightmost eigen-
problems: ¥ = 1000, M = 300; N = 5832, M =50; N =9831,
M=30; N=27,000, M =16.

1t is important, that the costs of computations are almost
identical to those of the leftmost eigenpairs for the same
problems. This agrees with the theoretical prediction.

11. CONCLUSIONS

1. The proposed two-phase subspace iteration/
Rayleigh quotient method enables one to compute
effectively a large number of eigenpairs of the generalized
symmetric eigenproblem Ax = iBx.

2. The method is best suited to very large, 3D elliptic
problems, discretized by FEM or FDM.

3. Forlarge, 3D biharmonic problems our method can
be also recommended.

4. Qur method is not recommended for small problems
whose matrices have the bandwith m, comparable to the
number of non-zero elements per row, g ~ n1,,.

5. The method can be used for non-symmetric
problems if the non-symmetry is moderate. Several leftmost
eigenpairs can be computed effectively.

6. Our method seems to be the best for problems
where the factorization is not allowed because of memory
limitations.

7. For extremely large 3D problems (N~ 10°) our
method is much better than all methods performing
factorizations, like the Lanczos or the accelerated subspace
iteration methods. For large M it is also better than
methods performing orthogonalization in each iteration,
such as the Davidson or SRQMCG2 methods.

8. OQur method can be used for solving full generalized
eigenproblems that cannot be solved by the transformation
methods because of memory limitations.

9. The application of conjugate gradient/Lanczos-type
iterative methods as linear solvers makes the method
“factorization-free.”

10. The use of the SSOR preconditioner improves the
effectiveness for large problems, whereas using it for smail
problems is not always successfui.

11. The missing eigenpairs are unlikely if we use a
proper strategy of shifting for the subspace iteration phase.

12, The proposed method is able to compute multiple
eigenvalues without any difficulties.

13. The cost of computation depends mainly on the
dimensions of the problem (roughly as N'?-~N'%*) and on
the distribution of the eigenvalues in the spectrum.
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14. The values of the control parameters are not critical
and the standard ones can be used for various problems.
Sometimes (rarely) they should be “tuned.”

15. The main part of the algorithm can be built up as a
“black box.”

16. The method can be vectorized easily due to the
independence of the iterative solution processes performed
in both phases of the computation.

17. Several rightmost eigenpairs can be computed-also
by our method.

The algorithm presented in this paper is being developed.
We are searching for better preconditioners, more effective
switching criteria, and a shifting strategy. Moreover, we
have developed another method based on a similar idea.
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